Current & Voltage Transformer Basics

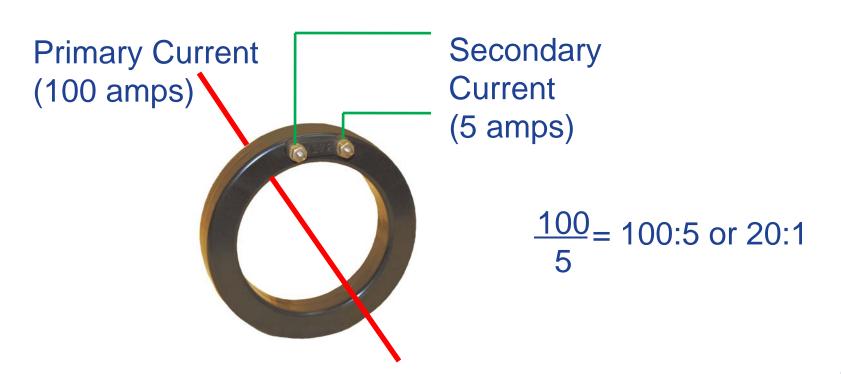
Ken Sonnenberg GE Multilin / Instrument Transformers, Inc.

Agenda

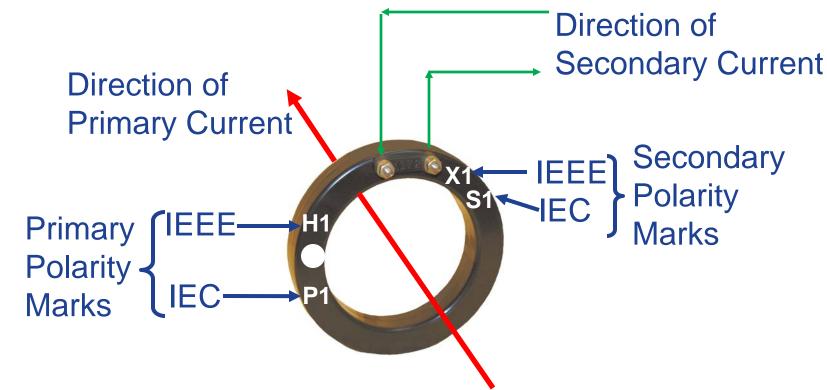
Current Transformers

Transformer Ratio Polarity IEEE Metering Accuracy IEEE Relaying Accuracy Accuracy Influencing factors Burden Calculation Rating Factor

Voltage Transformers

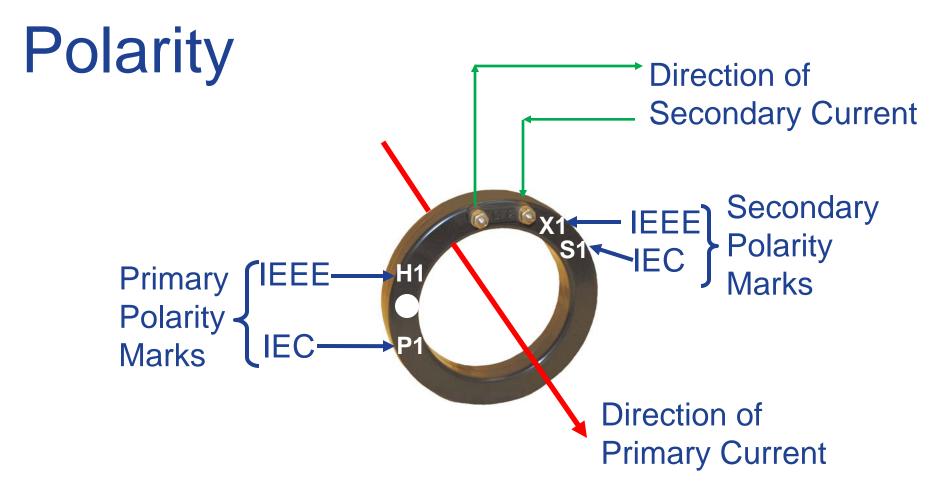

IEEE Accuracy Classes Installation Guidelines

Required Information for Specifying CTs & VTs


"Take Home Rules" for CTs & VTs

Transformer ratio (TR)

Transformer Ratio = Primary Current Secondary Current


Polarity

Remember:

Primary current into "polarity" =

Secondary current out of "polarity"

Remember:

Primary current into "non-polarity" =

Secondary current out of "non-polarity"

CT Metering Accuracy

Actual secondary current Secondary current

Difference in % is known as the "Accuracy" of the CT

Accuracy Class (*)

Application

0.15 High Accuracy Metering
0.15S "Special" High Accuracy Metering
0.3 Revenue Metering
0.6 Indicating Instruments
1.2 Indicating Instruments

* All accuracy classes defined by IEEE C57.13 or C57.13.6

* Accuracy classes include both ratio & phase angle error

Burden

Load connected to CT secondary

Includes devices & connecting leads

Expressed in ohms

Standard values = B0.1, B0.2, B0.5, B0.9, B1.8

E0.04, E0.2

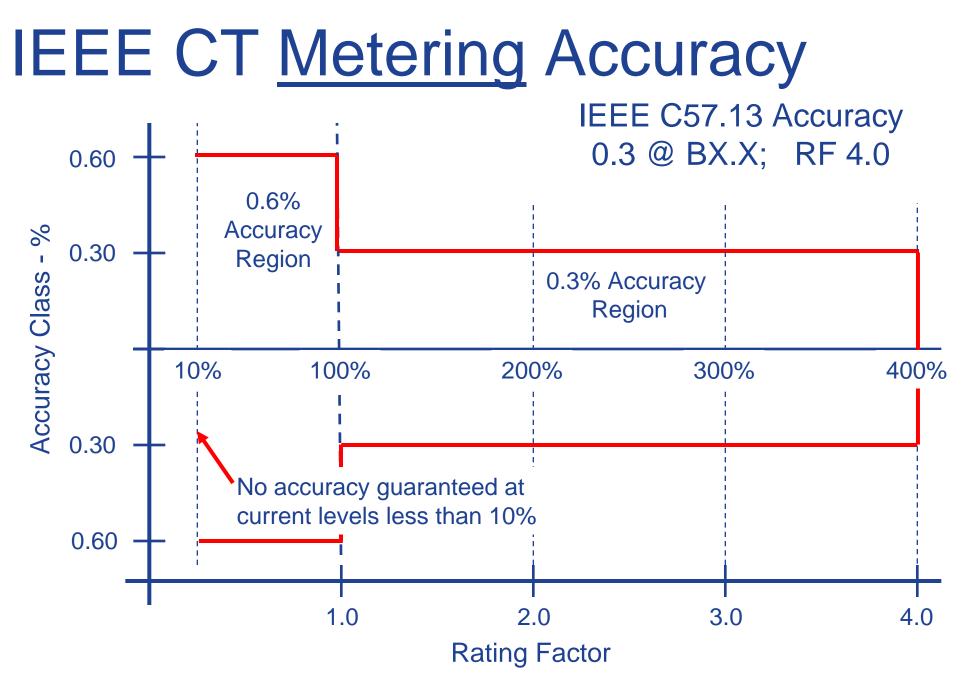
All burdens defined by IEEE C57.13 or C57.13.6 for 60 Hz only

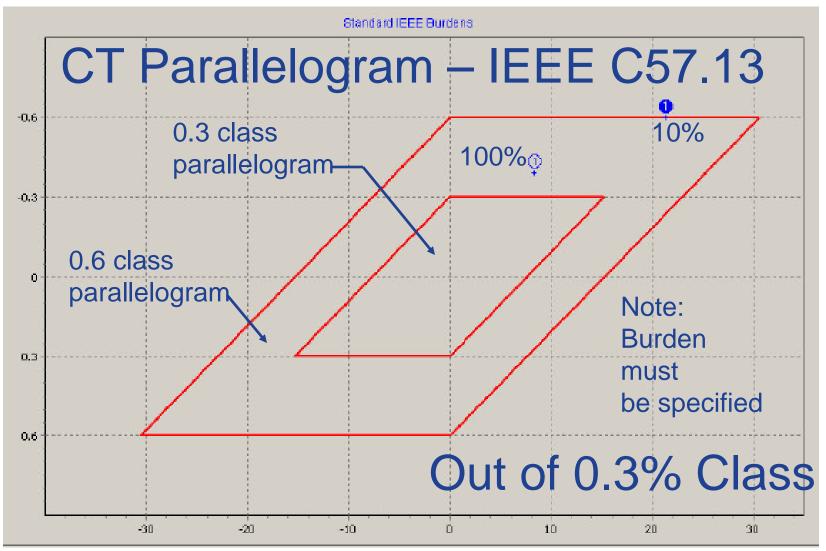
Standard IEEE CT Burdens (5 Amp) (Per IEEE Std. C57.13-1993 & C57.13.6)

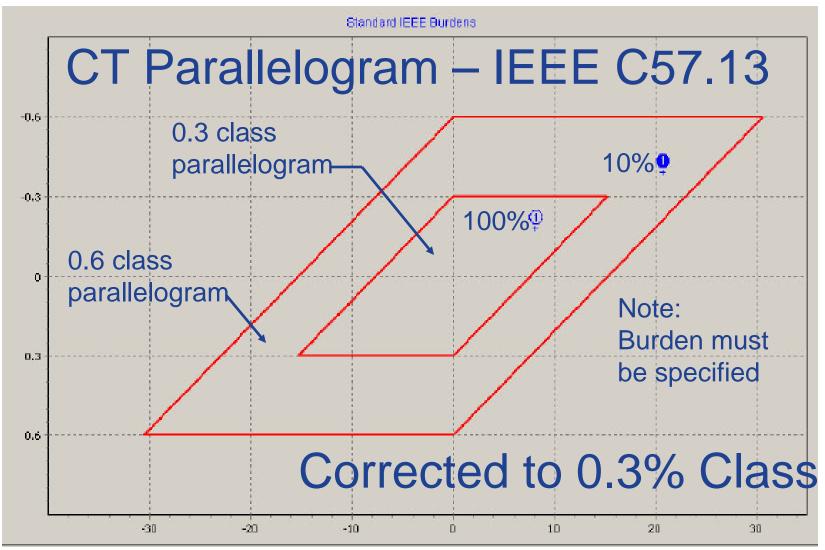
Application	Burden Designation	Impedance (Ohms)	VA @ 5 amps	Power Factor
Metering	B0.1	0.1	2.5	0.9
	B0.2	0.2	5	0.9
	B0.5	0.5	12.5	0.9
	B0.9	0.9	22.5	0.9
	B1.8	1.8	45	0.9
	E0.2	0.2	5	1.0
	E0.04	0.04	1	1.0

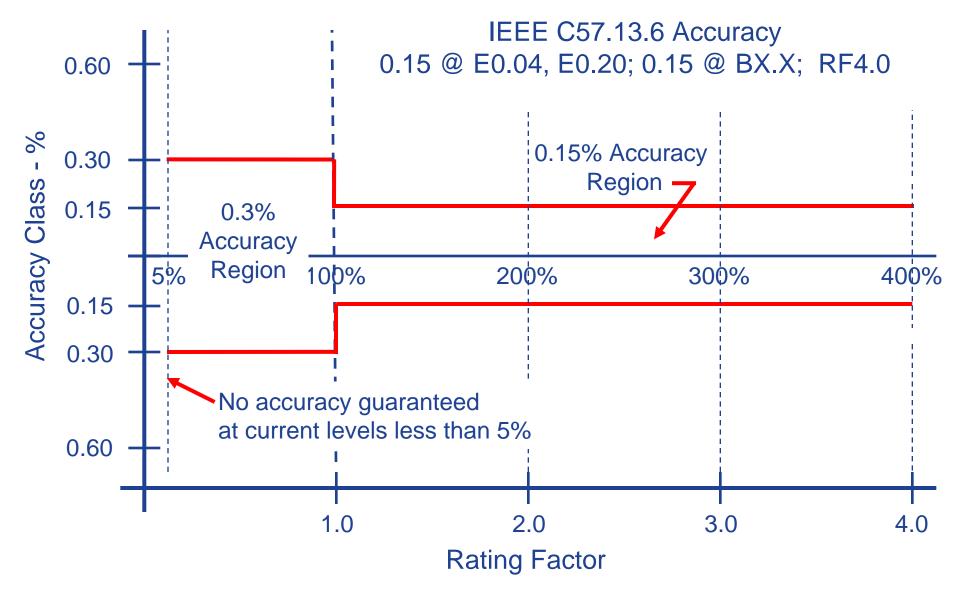
"Accuracy" expressed as:

<u>Typical</u> Examples

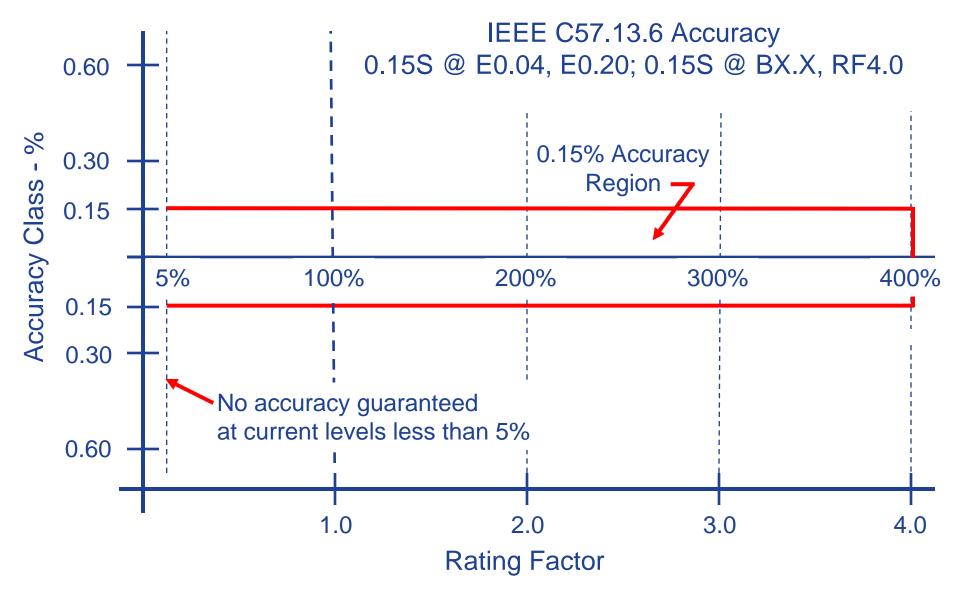

Accuracy Class +
(0.3, 0.6, 1.2) (*)Burden (Ohms) =
(B0.1, B0.2, B0.5, B0.5, B0.9, B1.8)0.3B0.2
0.6B0.90.6B0.9
1.2B1.8


(0.15^{*}, 0.15S[^]) E0.2, E0.04) 0.15E0.2


* Accuracy class is stated at 100% rated current


* At 10% rated current, twice the error is allowed (5% for 0.15 class)

^ Accuracy class is stated at 100% to 5% rated current



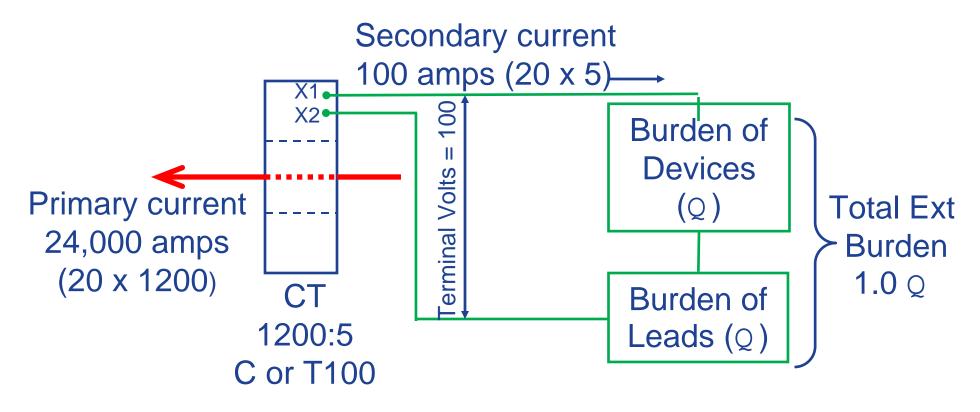
47

48

Standard Relay Accuracy Classes

C or T100 C or T200 C or T400 C or T800

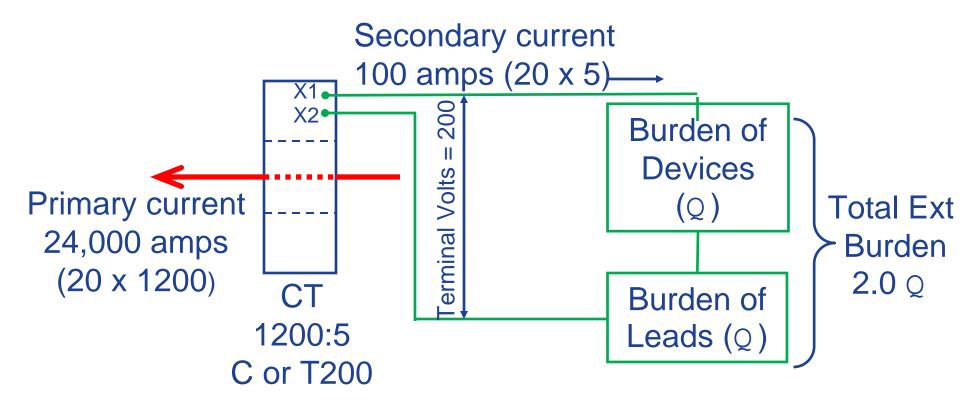
What do these mean?


. . .

Relay class (C or T____) designates minimum secondary terminal volts...

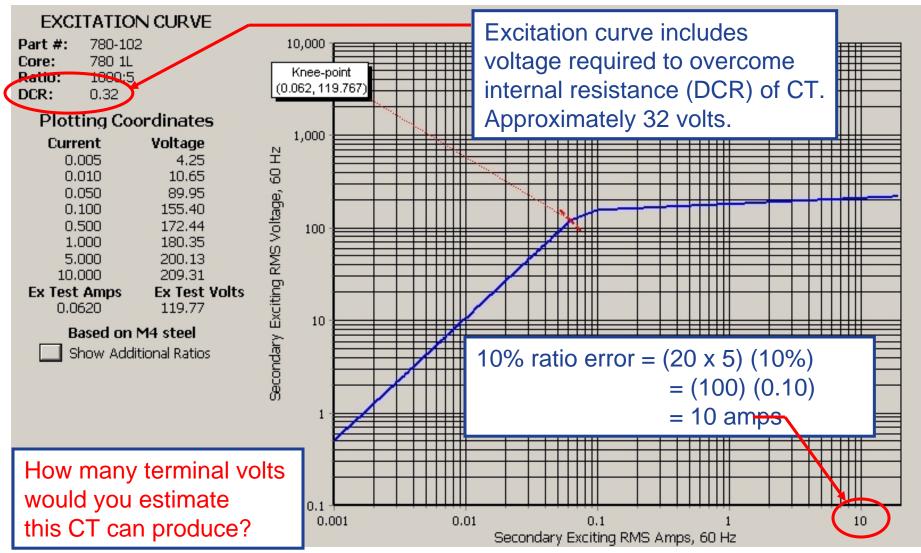
At 20 times rated current Without exceeding 10% ratio error Into a maximum specified burden

> Now that everyone is totally confused let's look at some simple examples


C or T100 example

Terminal Volts = (20 times rated) (Total external burden)

100 Volts = (100 amps) ($1.0 \circ$)


C or T200 example

Terminal volts = (20 times rated) (Total external burden) 200 Volts = (100 amps) (2.0 Q)

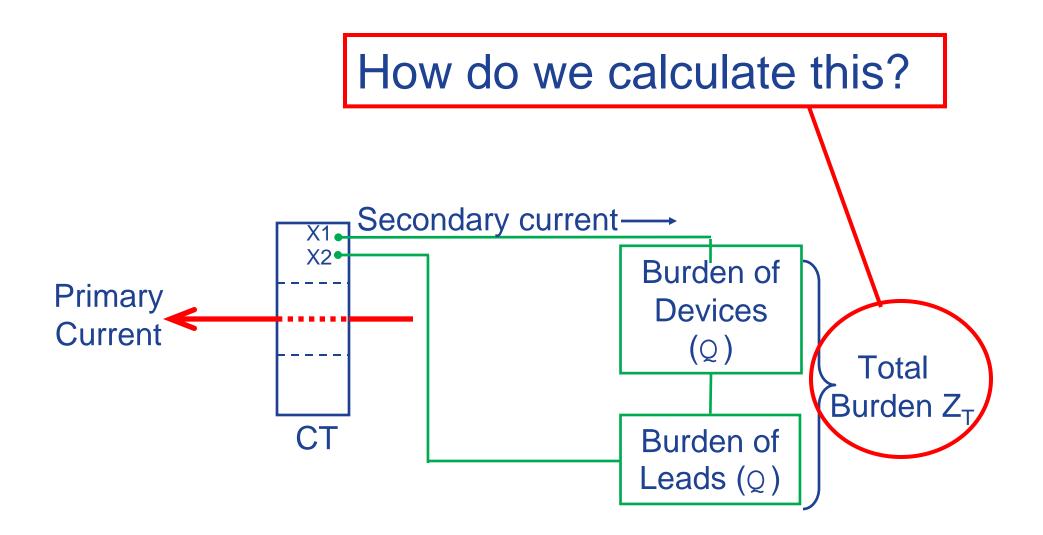
Standard IEEE CT Burdens (5 Amp) (Per IEEE Std. C57.13-1993)

Application	Burden Designation	Impedance (Ohms)	VA @ 5 amps	Power Factor
Relaying	B1	1	25	0.5
	B2	2	50	0.5
	B4	4	100	0.5
	B 8	8	200	0.5

Factors Influencing CT Accuracy

Frequency

"Low frequency" and "High accuracy" are not friends!!


Current Ratio

"Low ratio" and "high accuracy" are not friends!!

Burden

"High burden" and "High Accuracy" are not friends!!

CT Burden Calculation

CT Burden Calculation

$$Z_{\rm T} = R_{\rm CT} + R_{\rm L} + Z_{\rm B}$$

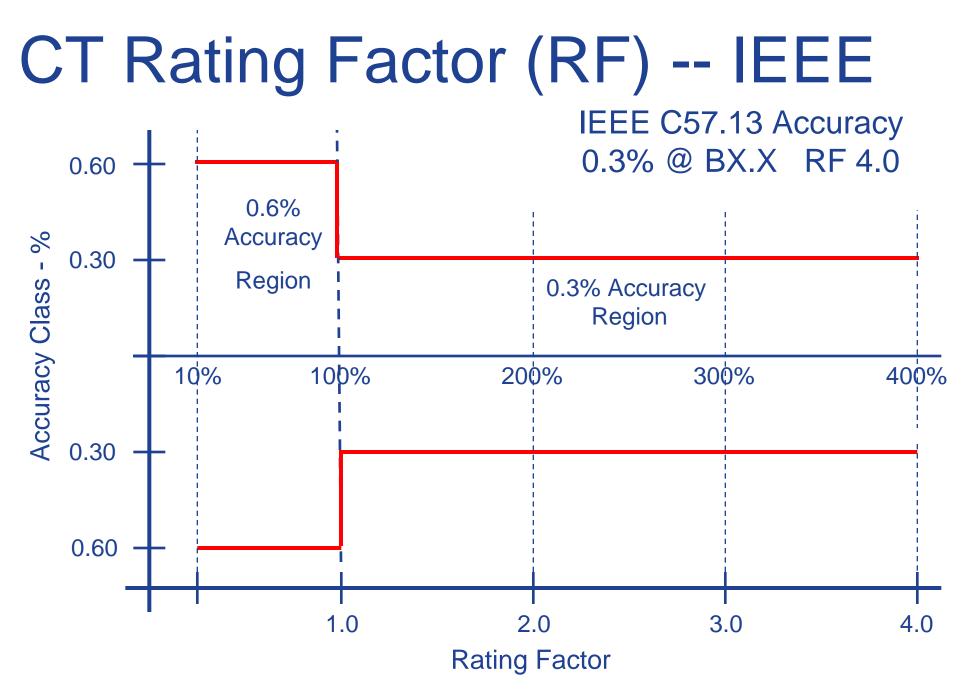
 Z_T = Total burden in ohms (vector summation of resistance and inductance components)

 R_{CT} = CT secondary resistance in ohms @75 deg C (DCR)

 R_L = Resistance of leads in ohms (Total loop distance)

 Z_B = Device impedance in ohms Assumption: 3 phase CTs are "Y" connected

CT Rating Factor (RF) -- IEEE


Rated current x (RF) = (RF)

Maximum continuous current carrying capability:

Without exceeding temperature limits

Without loss of published accuracy class

Typical rating factors -- 1.0, 1.33, 1.5, 2.0, 3.0, 4.0

IEEE VT Accuracy Class

<u>Metering Accuracy</u> <u>Classes (% error)</u>

0.15 — Defined by IEEE C57.13.6

IEEE VT Accuracy Class

Metering Accuracy **Class Burdens** VA PF 12.5 0.10 W Χ 0.70 25 0.20 Μ 35 Y 75 0.85 7 200 0.85 ZZ 0.85 400

These standard burden designations have no significance at frequencies other than 60 Hz.

IEEE VT Accuracy Class

Expressed as:

Accuracy Class + Burden Code

0.3 W,X,Y 0.6 Z 1.2 ZZ

These standard designations have no significance at frequencies other than 60 Hz.

VT Installation Guidelines Caution:

Rated voltage: Do not operate above 110%

Line to ground rated:

Do not connect line to line

Do not use on ungrounded systems w/o consulting factory

Rated Frequency: Do not operate below rated frequency w/o consulting factory

Required Information for Specifying CTs

Current Transformer RFQ Specification Sheet				
Environment: Indoor Outdoor				
Insulation Level Required:kV				
System Voltage (kV) Power Frequency (kV) BIL (kV) IEEE IEC				
CT application:MeteringProtection				
Max. Outside dimensions: Max. Depth:				
Transformer window size (If applicable): inches mm				
Round: Diameter Rectangular: Height x Width Primary Bar : Yes No				
Current ratio:: 5: 1: other				
Indicating only application:% atVA (skip metering and protection selections)				
Metering class: IEEE0.30.61.22.4other IEC0.20.51.0other				
Metering burden: IEEEB0.1B0.2 B0.5B0.9B1.8other IEC2.5VA5.0VA10VA15 VA30VAother				
Protection Class: C for IEEEVA, P for IEC				
Operating Frequency:50 HZ 60 HZ				
Rating Factor: 1.0 1.33 1.5 2.0 other				
Secondary Connections: terminals 24" leads Other (Specify below)				
Outer Insulation: Standard Cotton Tape and Varnish Polyester Tape				
Insulation Class: 105 °C (standard) Other				
Other Special Requirements (dimensional constraints, mounting requirements, other performance requirements, etc):				

Required Information for Specifying VTs

Voltage Transformer (VT) RFQ Specification

Environment: Indoor Outdoor

System Voltage (kV) Standard (check one) Power Frequency (kV) BIL (kV) 0.6 10 IEEE 4 0.72 3 IEC ---3.6 10 IEC 40 5.0 19 IEEE 60 7.2 20 IEC 60 8.7 26 75 IEEE 12 28 75 IEC 15 34 110 IEEE 24 50 125 IEC 25 40 IEEE 125 34.5 70 150 IEEE 34.5 70 200 IEEE Frequency: 50 HZ 60 HZ: Accuracy: IEEE: х М Υ z ΖZ w Enter 0.3, 0.6, 1.2 or leave blank. IEC: 10VA 25VA 50VA 100VA 200VA 500VA other Enter 0.2, 0.5, 1.0 or leave blank. Thermal Rating: VA (optional) V_{AC} - phase to neutral Primary Voltage: 1 bushing 2 bushing V_{AC} - phase to phase Secondary Voltage: 120V 115V 110V 100V \Box 120/ $\sqrt{3}$ \Box 115/ $\sqrt{3}$ \Box 110/ $\sqrt{3}$ \Box 100/ $\sqrt{3}$ other Rated Voltage Factor (1 bushing only): 1.9 for 30s 1.9 for 8 hours other Fuses: Primary Secondary Voltage None \square \square \square 600 - 720 V \square N/A \square 2.5 kV - 15 k V

Note: Integral fusing not available above 15 kV

Never open circuit a current transformer secondary while the primary is energized

CTs are intended to be proportional current devices. Very high voltages can result from open circuiting the secondary circuit of an energized CT. Even very small primary currents can cause damage... Consult the factory if you have questions.

<u>Never short circuit the</u> <u>secondary of an energized VT</u>

VTs are intended to be used as proportional voltage devices. Damaging current will result from short circuiting the secondary circuit of an energized VT.

Metering applications do not require a "C" class CT

"C" class ratings are specified for protection purposes only. With some exceptions metering class CTs are typically smaller and less expensive.

CT secondary leads must be added to the CT burden

Electronic relays usually represent very little burden to the CT secondary circuit. In many cases the major burden is caused by the CT secondary leads.

Take Home Rule # 5

Never use a 60 Hz rated VT on a 50 Hz System

60 Hz VTs may saturate at lower frequencies and exceed temperature limitations. VT failure is likely...severe equipment damage is possible.

Take Home Rule # 6

Exercise caution when connecting grounded VTs to ungrounded systems

Line to ground voltage on any VT may exceed the primary voltage rating during a fault condition... VT must be designed for application.

QUESTIONS?

Backup Data

CT Burden Calculation

1. For single phase or zero sequence applications:

Total burden: Zt=Rct+2•RI+Zb

2. For three phase connections:

The burden on individual CTs varies with the type of connection, fault and applications:

Connection method	Type of Fault/Application	
and CT location	3 Phase, Ph. to Ph. or Metering	Phase to ground
Y (connected at CT)	Zt=Rct+RI+Zb	Zt=Rct+2•RI+Zb
Y (connected at relay or meter)	Zt=Rct+2•RI+Zb	Zt=Rct+2•RI+Zb
Delta (connected at relay or meter)	Zt=Rct+2•RI+3•Zb	Zt=Rct+2•Rl+2• Zb
Delta (connected at CT)	Zt=Rct+3•Rl+3•Zb	Zt=Rct+2•Rl+2• Zb

Zt: Total burden seen by the CT in Ω used for calculating required CT excitation voltage (Es).
 Zte=Zt-Rct: Total CT external burden in Ω used for calculating required CT relay class.
 Rct: CT's secondary winding resistance in Ω. Also include any relay impedance that is inside the delta connection.

RI: One way leads burden in Ω .

Zb: Relay impedance in Ω .

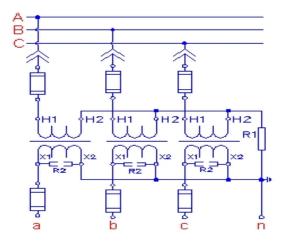
So, optimum CT performance (lowest burden) will therefore be obtained if Y connected CTs are interconnected at the CT location and delta connected CTs are interconnected at the relay location.

CT Burden Calculation --Auxiliary CT (ACT)

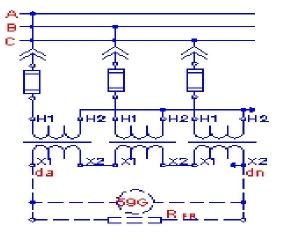
1 Calculate ACT primary impedance (Z_{pri}) converted from ACT secondary burden (Z_{sec}) $(I_{pri})^2 \bullet Z_{pri} = (I_{sec})^2 \bullet Z_{sec}$

 $I_{sec} = ACT$ secondary current (A)

 I_{pri} = ACT primary current (A)


Calculate total burden (Z_{tmct}) on main CT

 $Z_{\text{pri}} = (|_{\text{sec}}/|_{\text{pri}})^2 \bullet Z_{\text{sec}}$


2

$$\begin{split} Z_{tmct} &= Z_{bm} + Z_{pri} + Z_{act} \\ Z_{tmct} &= Z_{bm} + [\ (I_{sec}/I_{pri})^2 \bullet Z_{sec}] + Z_{act} \\ Z_{bm} &= \text{Burden on the main CT (including leads) w/o ACT (\Omega)} \\ Z_{sec} &= \text{Burden on the ACT, including leads burden (}\Omega\text{)} \\ Z_{act} &= \text{Burden of the ACT itself (}\Omega\text{)} \end{split}$$

Comparison of Different VT Connections for GF Detection & Ferroresonance Damping

Y-Y with damping resistor connected between the VT primary neutral and the ground or connected parallel with the VT secondary windings

Y-Broken Delta ∆ with damping resistor and 59G relay connected across the VT secondary broken corner delta

Resistor connected in primary

It has to use high voltage resistor that involves high cost and more space.

□Use 3 resistors connected in Y connected secondary

3 resistors are needed and power loss occurs at system normal condition

Y-Broken Corner Delta is a preferred method

IEC CT Metering Accuracy Class

(Per IEC 60044-1)

Class	± Percentage current		± Phase displacement at percentage									
	(ratio) error at percentage current shown below				of rated current shown below							
			0			Min	utes			Centir	adians	
	5	10	100	120	5	20	100	120	5	20	100	120
0.1	0.4	0.2	0.1	0.1	15	8	5	5	0.45	0.24	0.15	0.15
0.2	0.75	0.35	0.2	0.2	30	15	10	10	0.90	0.45	0.30	0.30
0.5	1.5	0.75	0.5	0.5	90	45	30	30	2.70	1.35	0.90	0.90
1.0	3.0	1.5	1.0	1.0	180	90	60	60	5.40	2.70	1.80	1.80

Class	+ Percentage current (ratio) error at percentage current shown below		
	0% Current Rating 120% Current Rating		
3.0	3	3	
5.0	5	5	

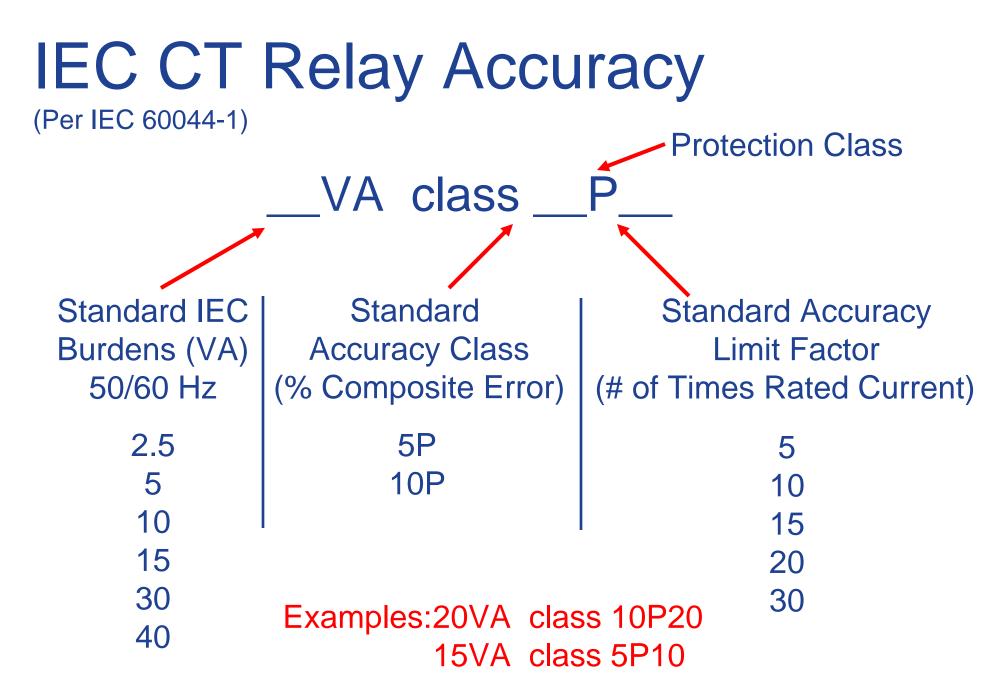
Conditions: 1. PF = 0.8 lagging

2. Burden = 25%-100% of rated burden for Classes 0.1-1.0

3. Burden = 50%-100% of rated burden for Classes 3.0-5.0

(Per IEC 60044-1) Metering Accuracy Class

Standard IEC Metering /Relaying Burdens (VA) 50 / 60 Hz


(Per IEC 60044-1) Metering Accuracy Class

"Accuracy" expressed as:

Burden (VA) Accuracy Class

Typical Examples:

2.5 VA class 0.2 10 VA class 1.0 15 VA class 0.5

Extended Current Rating IEC 60044-1

Similar to IEEE CT Rating Factor (RF)

Expressed as a percentage of the rated primary current

Standard values are 120%, 150% & 200%

For example: IEC extended current rating = 200% Is very similar to IEEE CT rating factor (RF) = 2

Instrument Security Factor (FS)

Defines the minimum excitation current (lexc) of the CT (horizontal axis of excitation curve) at the secondary limiting e.m.f. (vertical axis of excitation curve):

 $\underline{\mathsf{lexc}} \ge \mathsf{FS} \bullet \mathsf{Isn} \bullet 10\%$

Isn = Rated secondary current

<u>Secondary limiting e.m.f.</u> = FS • Isn • (Rated Burden + Rct)

Rct = Internal resistance of the CT @ 75 deg C usually expressed in ohms

"Rated Burden" usually expressed in VA. Convert to ohms by dividing VA by (Isn)²

Let's look at a typical example

Instrument Security Factor (FS)

Typical example: 10VA class 0.5 FS 5

- $lexc \ge FS \bullet lsn \bullet 10\%$
- $lexc \geq 5$ 5 10% $\geq 2.5~amps$

Secondary limiting e.m.f. = FS • Isn • (Rated Burden + Rct)

Reference excitation curve to verify lexc \geq 2.5 amps at the calculated secondary limiting e.m.f.

Note: High accuracy class and low FS requirements may not be possible

IEC VT Accuracy Class

Per IEC 60044-2

Metering VTs

Metering	± Percentage	± Phase displacement		
Accuracy Class	voltage (ratio) error	Minutes	Centiradians	
0.1	0.1	5	0.15	
0.2	0.2	10	0.30	
0.5	0.5	20	0.60	
1.0	1.0	40	1.20	
3.0	3.0	Not specified	Not specified	

Conditions:

PF = 0.8 lagging

Voltage range = 80% -120% of rated voltage

Burden range = 25% - 100% of rated burden.

IEC VT Accuracy Class

Per IEC 60044-2

Relaying VTs

Relaying	± Percentage	± Phase displacement		
Accuracy Class	voltage (ratio) error	Minutes	Centiradians	
3P	3.0	120	3.5	
6P	6.0	240	7.0	

Conditions:

PF = 0.8 lagging

Voltage range = 5% rated voltage to RVF*rated voltage Burden range= 25% - 100% rated burden

IEEE/ANSI does not have VT relaying classes. It uses metering classes for relay applications

IEC VT Accuracy Burdens Per IEC 60044-2

Standard Burdens (VA)		Preferred Burdens (VA)
10	100	10
15	150	25
25	200	50
30	300	100
50	400	200
75	500	500

IEC VT Accuracy Class

Expressed as:

Frequency + Burden + Accuracy Class 50 Hz, 25 VA, class 0.5 50 Hz, 30 VA, class 3P

The accuracy designation may also include the RVF (Rated Voltage Factor) specifying the maximum allowable operating voltage level

IEC VT Rated Voltage Factor (RVF) Per IEC 60044-2

Multiplying factor applied to primary voltage rating

Specifies maximum voltage and associated time period

Must be specified for line to ground applications involving non effectively grounded systems and line to ground rated primary voltages

IEC VT Rated Voltage Factor (RVF)

Per IEC 60044-2

RVF	Rated Time	Method of connecting the primary winding and system grounding conditions			
1.2	Continuous	Between phases in any network			
		Between transformers star-point and ground in any network			
1.2	Continuous	Between phase and ground in an effectively grounded neutral system			
1.5	30 seconds				
1.2	Continuous	Between phase and ground in a non-effectively grounded neutral system with automatic ground-fault tripping			
1.9	30 seconds				
1.2	Continuous	Between phase and ground in an isolated system			
1.9	 8 hours 8 hours 9 without automatic ground-fault tripping or in a resonant grounded system without automatic ground-fault tripping 				
Notes: Reduced rated times are permissible by agreement between manufacturer and user.					
	All standard designs meet 1.2 continuous.				

VT Thermal Ratings Typical ratings @ 30 deg C ambient Low voltage Med Voltage 150 VA 600 VA 300 VA 750 VA 750 VA 1500 VA

Note these values are typically much higher than the rated accuracy burdens

IEC products not required to refer to thermal ratings

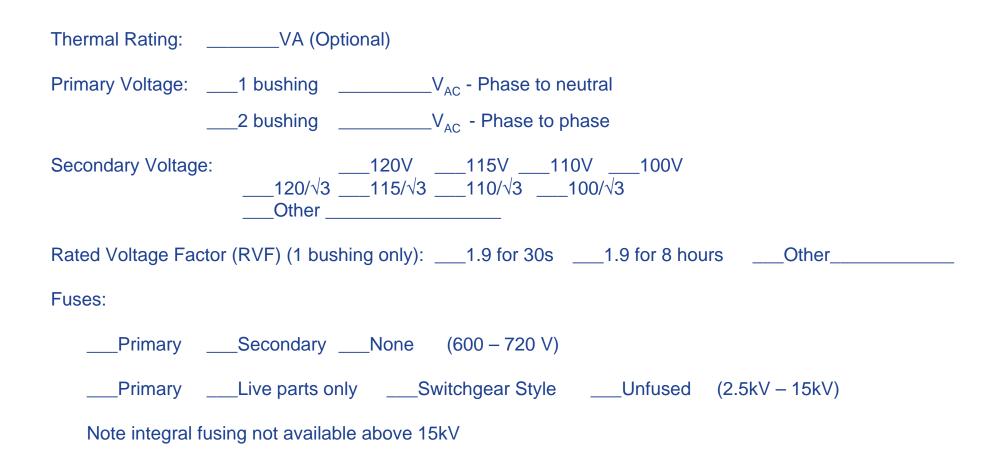
Current Transformer (CT) RFQ Specification

Environment:	IndoorOutdoor				
System Voltage (kV) 0.6 0.72 3.6 5.0 7.2	Power Frequency (kV) 4 3 10 19 20	BIL (kV) 10 40 60 60	Standard (Check one) IEEE IEC IEC IEEE IEC		
8.7 12 15 24 25 34.5 34.5	26 28 34 50 40 70 70	75 75 110 125 125 150 200	IEEE IEC IEEE IEEE IEEE IEEE		
CT Application: Dimensions: Inches	MeteringProtection				
	x W x D nd: Diameter; Rectangular:	L x W	; Primary Bar:		
Current Ratio:: 5: 1					

Continued next slide

Current Transformer (CT) RFQ Specification (Continued)

Accuracy:					
Indication Only:	%,V	A (Skip meteri	ng & prote	ction selec	ctions)
	0.30 0.20.5				Other
	B0.1B0 2.55.0				
Protection Class:	C(IEEE))VA	Α,P	_(IEC)	
Operating Frequency:	60HZ5	60HZ			
Rating Factor:	1.01	.33	1.5	2.0	Other
Secondary Connections:	Terminals	24 inch lea	ads		
Outer Insulation:	Standard	Cotton tap	e & varnis	h	Polyester tape
Insulation Class:	105 ºC (Stan	dard)	Other		


Other Special Requirements (dimensional constraints, mounting requirements, ...etc):

Voltage Transformer (VT) RFQ Specification

Environment:	IndoorOutd	oor	
System Voltage			Standard (Check one)
0.6	4	10	
0.72	3		IEC
3.6	10	40	IEC
5.0	19	60	IEEE
7.2	20	60	IEC
8.7	26	75	IEEE
12	28	75	IEC
15	34	110	IEEE
24	50	125	IEC
25	40	125	IEEE
34.5	70	150	
34.5	70	200	IEEE
Operating Frequ	uency:60HZ50HZ		
Accuracy:			
	WXMY Enter 0.3, 0.6, 1.2, or leave blank)	_ZZZ	Other
IEC: _	10VA25VA50VA Enter 0.2, 0.5, 1.0, or leave blank)	_100VA200VA	500VAOther

Continued next slide

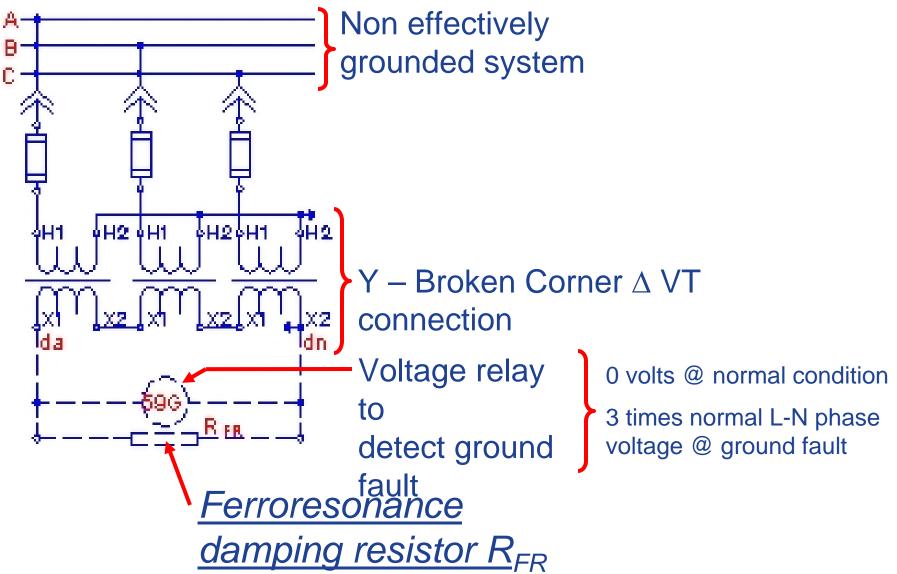
Voltage Transformer (VT) RFQ Specification (Continued)

Ferroresonance

Possible with <u>Y connected grounded VTs</u> on <u>ungrounded power systems</u>

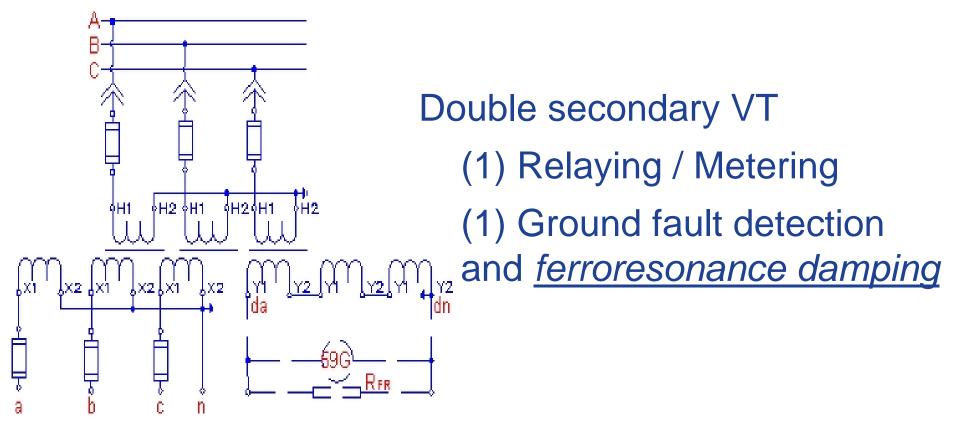
A VT is an inductive component

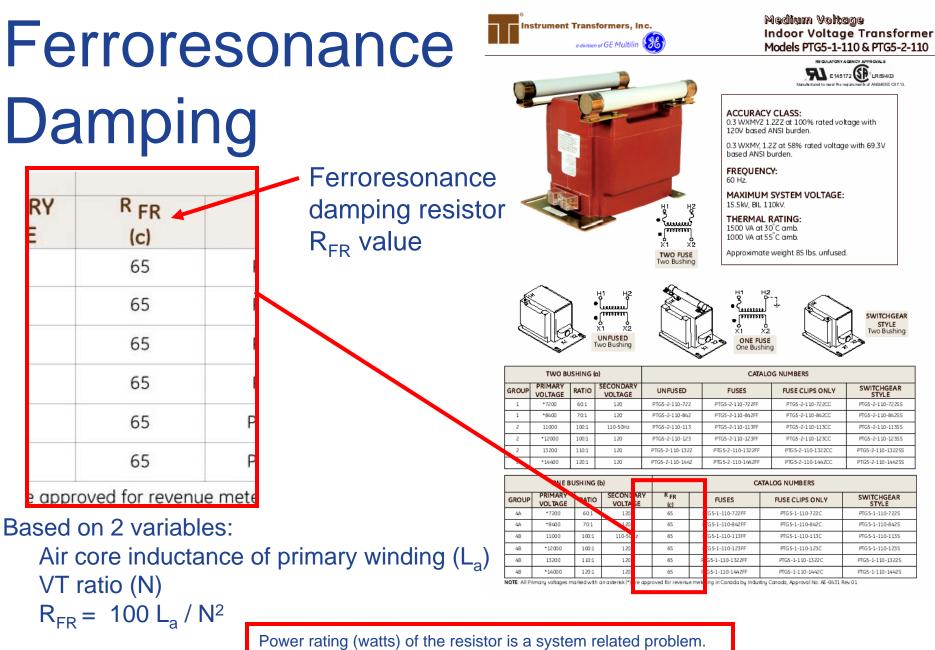
- Capacitance to ground exists in the system
- When they match ferroresonance may occur
- May cause higher VT voltages & saturation
- Possible results -- High VT currents Overheating VT failure


Recommended reading:

"Ferroresonance of Grounded Potential Transformers on Ungrounded Power Systems"

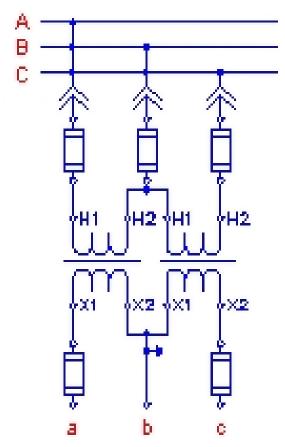
AIEE Power Apparatus & Systems, Aug 1959, pg 607-618, by Karlicek and Taylor


Ferroresonance Damping

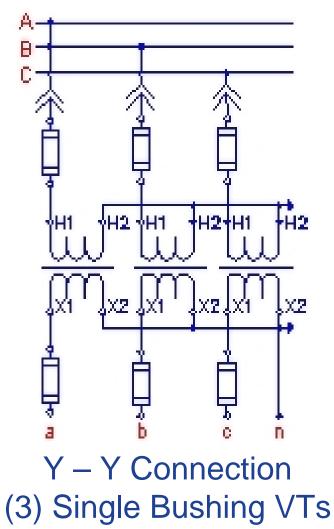

Preferred method

Ferroresonance Damping Preferred method

Y-Y/Broken Corner ∆ Connection



Jim Bowen's paper suggests 50% of VA rating of a single VT.


IEEE VT Groups

VT Group	No. of Bushing	Connection Method	Neutral Grounding	Notes
1	2	open ∆ Y-Y possible	Any	Withstand 25% over rated voltage on an emergency basis
2	2	open ∆ Y-Y possible	Any	Withstand 10% over rated voltage continuously. Primary rated for line to line voltage.
3	1	Y-Y-Y	Any	Outdoor, two secondary windings. Withstand 10% over rated voltage continuously.
4A	1	Y-Y	Effectively	Withstand 10% over rated voltage continuously & 25% on an emergency basis. For operation at 100% rated voltage.
4B	1	Y-Y Y-Broken Corner ∆	Non- effectively	Withstand 10% overvoltage continuously. For operation at 58% rated voltage.
5	1	Y-Y	Effectively	Outdoor. Withstand 40% over rated voltage for 1 minute and 10% over rated voltage continuously

VT Typical Connections

Open Delta Connection (2) Double Bushing VTs

Short-Time Thermal Current Rating

One (1) – second thermal rating

Expressed as value of RMS primary current

Main influencing factor: CT primary & secondary wire size

Can be converted to thermal rating for any time period (t) up to five (5) seconds:

$$I_{1-sec} 3 \sqrt{t}$$

Tips for Avoiding CT Saturation

Use higher ratio CTs

Use separate set of high ratio CTs for high fault current tripping

Reduce secondary burden Select low burden relays & meters Distribute single phase burdens among phases Increase size of secondary leads Reduce length of secondary leads

Use "step down" auxiliary CTs